miblab.kidney_dixon_fat_water#
- miblab.kidney_dixon_fat_water(input_array, clear_cache=False, verbose=False)[source]#
Calculate fat/water maps on post-contrast Dixon images.
This requires 2-channel input data with out-phase images, in-phase images.
This uses a pretrained nnunet based model, hosted on Zenodo under the hood this runs nnUNetPredictor (for more details MIC-DKFZ Wiki)
- Parameters:
input_array (numpy.ndarray) – A 4D numpy array of shape [x, y, z, contrast] representing the input medical image volume. The last index must contain out-phase, in-phase, in that order.
clear_cache – If True, the downloaded pth file is removed again after running the inference.
verbose (bool) – If True, prints logging messages.
- Returns:
A dictionary with the keys ‘fat’ and ‘water’, each containing a binary NumPy array representing the respective map.
- Return type:
Example
>>> import numpy as np >>> import miblab >>> data = np.random.rand(128, 128, 30, 2) >>> fatwatermap = miblab.kidney_dixon_fat_water(data) >>> print(fatwatermap['fat'].shape) [128, 128, 30]