miblab.rat_fetch#
- miblab.rat_fetch(dataset: str | None = None, *, folder: str | Path = './tristanrat', unzip: bool = True, convert: bool = False, keep_archives: bool = False) List[str] [source]#
Download, recursively extract, and (optionally) convert TRISTAN rat MRI studies from Zenodo (record 15747417).
The helper understands the 15 published studies S01 … S15. Pass
dataset="all"
(or leave dataset empty) to fetch every archive in one go.- Parameters:
dataset –
"S01" … "S15"
to grab a single study"all"
or None to fetch them all.folder – Root directory that will hold the
SXX.zip
files and the extracted DICOM tree. A sibling directory<folder>_nifti/
is used for conversion output.unzip – If True, each ZIP is unpacked recursively (handles inner ZIP-in-ZIP structures).
convert – If True, every DICOM folder is converted to compressed NIfTI (_requires the dicom2nifti wheel and ``unzip=True``_).
keep_archives – Forwarded to
_unzip_nested()
; set True to retain each inner ZIP after extraction (useful for auditing).
- Returns:
Absolute paths to every
SXX.zip
that was downloaded (whether new or cached).- Return type:
Examples
Download a single study and leave it zipped
>>> from miblab import rat_fetch >>> rat_fetch("S01", folder="~/tristanrat", unzip=False) ['/home/you/tristanrat/S01.zip']
Fetch the entire collection, unzip, but skip conversion
>>> rat_fetch(dataset="all", ... folder="./rat_data", ... unzip=True, ... convert=False)
Full end-to-end pipeline (requires dicom2nifti)
>>> rat_fetch("S03", ... folder="./rat_data", ... unzip=True, ... convert=True)
The call returns the list of ZIP paths; side-effects are files extracted (and optionally NIfTI volumes) under folder.